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INTRODUCTION
Helicobacter pylori

Helicobacter pylori (H. pylori), a slow-growing, helical shaped, gram-negative, 
flagellated and microaerophilic bacillus, is the most common infectious 
bacterium of the human stomach, infecting more than 50% of the human 
population worldwide.[1] Developing countries have higher contamination 
with H. pylori with a prevalence of greater than 80%. This bacillus is 2.5 to 5 
μm long and 0.5 to 1.0 μm wide, with 4 to 6 flagella for its movement and 
can live in such an environment that no other bacteria are able to survive.[2] 
Two Australian scientists Warren and Marshall, awarded Nobel Prize in 2005, 
discovered the correlation between colonization of H. pylori in the stomach 
and Peptic Ulcer Disease (PUD). The infection usually takes place in early 
childhood and adapts to human colonization by producing pathogenic factors 
such as urease, catalase, cytotoxin and Lipopolysaccharide (LPS), which 
directly interfere with the functions of the host cell and sustains throughout 
life in the stomach causing disease mainly in adults if not eradicated by 
therapy.[3] Bacterial, environmental and genetic factors affect the severity of 
H. pylori infection, which may involve the combination of these factors.[4,5] 

The related mechanism has not been completely revealed yet; however, a 
combination of different pathogenic factors, of which two main factors are 
CagA and VacA, may play a role. Due to the gastric colonization, the persistent 
infections can be associated with acute or chronic inflammation and most of 
them are asymptomatic, however the risk of acquiring site-specific disease 
is augmented.[6,7] Its colonization does not produce any symptoms itself and 
the symptoms are established in less than 20% of all infected individuals 
due to their infection.[8] Many studies show that persistent inflammation and 
abnormal epithelial proliferation during H. pylori infection are main factors 
that cause H. pylori-associated gastric diseases such as gastritis, PUD (90% 
of duodenal ulcers and 80% of gastric ulcers),[9,10] gastric adenocarcinoma 
and lymphoma (Mucosa-associated lymphoid tissue).[11,12] In 1994, H. pylori 
is stated as a group 1 human carcinogen by the World Health Organization 
and the International Agency for Research because of its effectively crucial 
roles in the development of both intestinal-type (About 90% of cases) and 
diffuse-type (About 32% of cases) gastric adenocarcinoma.[13,14] In H. pylori 
infected patients, studies showed that there is a positive association between 
H. pylori CagA-positive strains and the development of peptic ulcer disease 
and Gastric cancer (GC).[15,16] Patients with duodenal ulcers have reduced risk 
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Abstract

Helicobacter pylori (H. pylori), is the most common infectious bacterium of the Human stomach. In early 
childhood, colonization of H. pylori in stomach releases different pathogenic factors which interfere with 
functions of human cells. Combination of two main genetic pathogenic factors CagA and VacA play important 
role in causing severity of H. pylori infection. In H. pylori infected patients, CagA and CagPAI positive strains 
have positive association in development of peptic ulcer disease and gastric cancers.50-70% of H. pylori 
produces CagA gene that is multifunction toxin. By adapting different mechanisms CagA define its role in 
oncogenic signaling cascades, in tumor suppressor pathway and in inflammation. CagA gene is strongly 
associated with VacA cytotoxic function and the strains, ultimately responsible for epithelial destruction of 
stomach and leading towards cancer. Review provides, CagA has important role in the virulence of H.pylori 
infection. Different Peptic ulcer diseases and gastric cancers are caused by the presence of CagA gene.
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of arising gastric cancer comparing to those with gastric ulcers.[17] Further 
studies have showed that many extragastric diseases, including Idiopathic 
Thrombocytopenic Purpura (ITP),[18,19] Iron Deficiency Anemia (IDA),[20,21] 
fatal cardiovascular events,[22-25] autoimmune thyroid diseases,[26] Diabetes 
Mellitus (DM)[27-29] and hepatobiliary diseases,[30-32] may also be caused by 
H. pylori.

Cytotoxin-associated gene A

Cytotoxin-associated gene A (CagA), a 120 to 145 KDa protein encoded 
by CagA gene (One of 32 genes of CagPAI), is a multifunctional toxin 
secreted by H. pylori and is translocated into the host target cells via Type 4 
Secretion System (T4SS) during H. pylori infection.[33] Approximately 50%-
70% of H. pylori strains have CagA gene, whose prevalence is approximately 
90% in certain Asian countries. This multifunctional toxin is involved 
in the distraction of the apical-basolateral polarity of epithelial cell and 
cell tethering and is also involved in the stimulation of cell proliferation, 
migration and cell morphological variations.[34,35] Through these mechanisms, 
CagA induces epithelial to mesenchymal transition and cancer cell invasion. 
Interestingly, besides induction into gastric cells, CagA can also be inducted 
into B-lymphocytes[36] and into dentritic cells of murines and humans that 
dampens the immune response by lessening proinflammatory cytokines 
expression and augmenting suppressive cytokines production.[37,38] This 
shows double pro- and anti-inflammatory function of CagA during H. pylori 
infection reliant on the cellular milieu.

This bacterial protein contains a distinctive tertiary structure comprising 
of a solid N-terminal region (70% of the whole CagA) and an instinctively 
disordered C-terminal tail (30% of the whole CagA) that has the EPIYA 
segment and the CagA-multimerization (CM) motifs.[39,40] The structural 
diversity in C-terminal tail gives rise to the distinction in the size of the 
CagA.[41] A square plate-like shape is predicted by the N-terminal core, 
which contains three distinct domains 1-3. Domain 1 is mobile and flexible 
and is the most N-terminal domain having a minor interacting surface 
area with domain 2 but not domain 3. Domain 2 has a protease-resistant 
structural CagA core and also has a large antiparallel b sheet for binding of 
CagA to b1- integrin of the host membrane for its translocation. Domain 
3 also consists of a protease-resistant structural CagA core. A lariat loop is 
produced via looping back of the disordered C-terminal tail onto domain 
3. CagA gene, a polymorphic gene, displays various repeated sequences 
situated in its 3’ region and each repeated region has Glu-Pro-Ile-Tyr-Ala 
(EPIYA) motifs, consisting of site for tyrosine phosphorylation.[42] The 
disordered C-terminal region has four EPIYA motifs, designated as EPIYA 
–A, -B, -C and –D on the basis of amino acid sequences fringing the EPIYA 
motifs,[43,44] with variations in geographical distribution and also in degrees 
of phosphorylation.[16,44] The phosphorylation of EPIYA-A and EPIYA-B 
is lesser than that of EPIYA-C and these motifs are found throughout the 
world. Only strains from Western countries have EPIYA-C, which is a 
marker of the risk of gastric adenocarcinoma. Therefore, the Western strains 
of H. pylori contain EPIYA-repeat region having the sequence of EPIYA 
–A, -B and -C motifs (A-B-C type CagA).[45,46] East Asian strains have 
EPIYA-D, which provokes more release of interleukin-8 (IL-8) from the 
host epithelial cells of the stomach than the other EPIYA motifs and these  
motifs have greater extent of phosphorylation than the other EPIYA motifs.[47]  
Thus, the East Asian strains of H. pylori contain EPIYA-repeat region having 
the sequence of EPIYA –A, -B and –D motifs (A-B_D type CagA).[41]  

Following the delivery into the gastric epithelial cells, CagA deregulates 
multiple signaling pathways through interaction with many human proteins 
in both phosphorylation-dependent and phosphorylation-independent 
manners.[48,49] Studies showed that CagA behaves as a promiscuous scaffold 
or hub protein because of its intramolecular interactions and the disturbance 

of various host proteins instantaneously. After translocation, CagA is bound 
to the inner side of cell membrane. This mechanism of interaction between 
CagA and host cell membrane is complicated and reliant on the cellular 
milieu. This mechanism concerns two distinct CagA regions, the basic patch 
and the EPIYA motifs.[39] The basic patch, a cluster of basic residues on 
the surface of CagA domain 2, adheres like Velcro to phosphatidylserine, 
which is an acidic phospholipid precisely determined to the inner side of 
cell membrane and, in polarized host cell, this CagA-phosphatidylserine 
interaction has a crucial function in the binding of CagA to the cell 
membrane.[50] The EPIYA motifs are important for the connection of CagA 
with cell membrane in nonpolarized epithelial cells. Abl and Src kinases of the 
host carry out the phosphorylation of CagA at EPIYA regions.[51] Src kinases 
preferably at EPIYA-C and/or EPIYA-D regulate early phosphorylation 
and Abl kinases at any site regulate later phosphorylation during H. pylori 
infection.[48,52] Evidences have shown that CagA acts as the only known 
bacterial oncoprotein in human population.[53] On the basis of CagPAI-
encoding, clinical isolated H. pylori strains are frequently subdivided into 
two kinds of strains, the CagA-positive strains and CagA-negative strains. 
About 6:4 is the infection ratio between CagA-positive and CagA-negative 
strains worldwide but East Asian countries are exception because of nearly all 
infections with CagA-positive strains of H. pylori. Patients with CagA-positive 
strains of H. pylori in Western countries have a higher risk of developing 
gastric adenocarcinoma than those with CagA-negative strains.[54,55] Many 
evidences suggest that the CagA-positive strain is the chief H. pylori strain 
that leads to carcinogenesis in gastric epithelial cells.[55,56] Nevertheless, many 
strains of H. pylori in East Asia contain CagA gene, which is regardless of the 
disease.[57] Furthermore, although situated in distinctive genomic loci, there 
has been established a vital correlation between VacA s1 (Either m1 or m2) 
stains and CagA positive strains of H. pylori.[58] VacA, a 140 KDa cytotoxin 
present in all strains, is produced by the bacteria and latter transformed into 
active form and finally inducted into host target cells.[59] CagA gene is strongly 
associated with the VacA cytotoxic function and the strains, which contain 
the arrangement of these genes, are supposed to be the most virulent strains 
of H. pylori,[60] leading to more severe epithelial destruction in the stomach 
and the occurrence of the most severe stomach diseases.[13,44,61]

Cag Pathogenicity Island

Cag Pathogenicity Island (CagPAI) is a 40 Kb DNA fragment having 
approximately 32 genes that encode for the various constituents of type 4 
secretion systems which are crucially important for cag translocation and 
some of them furthermore play a crucial part in inflammatory reactions 
in the target cells during pathogenesis.[62] Besides several virulence 
determinants of H. pylori, CagPAI plays a crucial role in the development 
of PUD and GC.[16] CagPAI is supposed to be entered through horizontal 
transfer from an unidentified organism into the H. pylori genome. It can also 
encode one of the most copious H. pylori proteins, CagA, which is delivered 
into various cells including gastric and non-gastric during infection. The 
existence of CagPAI and CagA is very much important in the pathogenesis 
during H. pylori infection. According to a novel insertion series, CagPAI can 
be alienated into two sections cag1 region and cag2 region.[63] CagPAI occurs 
in about 60% to 70% of H. pylori strains in Western world and almost 100% 
in East Asian world.[62] Cag-positive strains (Containing CagPAI) occur near 
or adherent to epithelial cells in stomach and cag-negative strains (lacking 
CagPAI) occur mainly in gastric mucosal layer.[55] Cag-positive strains raise 
the risk for more severe inflammation, dysplastic changes and carcinogenesis 
than cag-negative strains of H. pylori in the host target cells.[44,55] 

Furthermore, studies have shown that CagPAI seems to be intricate in the 
stimulation of IL-8 production and activation of NF- κB in gastric epithelial 
cells.[64,65] This is also ominously explained in the mucosa of stomach of 
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Mongolian gerbils infected with cag-positive H. pylori strains;[66] however, 
some studies suggest that this IL-8 production and activation of NF-κB does 
not depend on CagA but rather depends on T4SS encoded by cagPAI.[67] So 
consequently, the CagPAI existence leads to proinflammatory reactions in 
the target cells. Though many virulence factors are displayed during infection, 
but CAGPAI seems to be the most significant factor that is involved in the 
occurrence of peptic ulcer disease and gastric cancer.

Adaptation of  H. pylori in the Gastric Niche
Gastric colonization of H. pylori

H. pylori have a very firm tropism in the tissue of the human stomach. This 
bacterium gets access to the human gastric mucosa and colonizes only in the 
other body’s areas where gastric metaplasia occurs. H. pylori specially settle 
the gastric niche and can produce inflammations as well as malignancies.[11,68] 
Great progress has been achieved in the understanding of factors related 
to pathogenicity of H. pylori and their interactions with the constituents of 
gastric epithelium. These factors are membrane-associated, secreted, or 
delivered to the cytoplasm of the gastric epithelial cells. H. pylori also contain 
metabolic factors that make the bacterium able to change the gastric niche 
of the host for its own purpose.

In 1997, the genome of H. pylori was fully sequenced,[62] which is as small 
as a size of one-third of the genome of E. coli.[69] This accelerates and 
facilitates further studies in the research field on H. pylori infection and its 
colonization in human gastric epithelial cells. H. Pylori lives and adapts in 
the gastric epithelium because of its persistent and close association with 
the gastric niche throughout life. H. pylori genome has high diversity,[70]  
which can crucially contribute in the adaptation and persistence of  
H. pylori in the host gastric epithelial cell, as well as in the infection with 
H. pylori. The anatomical distribution of H. pylori infection and its clinical 
outcome are impacted significantly by the genetic factors[54] and the risk for 
gastric cancer development is considerably augmented by the polymorphisms 
in many genes.[71] The risk of gastric cancer development is two-folds to 
three-folds greater in individuals having the pro-inflammatory polymorphism 
of the IL-1β and IL-1 receptor antagonist genes than those individuals 
who have less pro-inflammatory genotypic activity.[72] Similarly, increased 
risk of gastric cancer development is also related with polymorphism in  
the genes that control the tumor necrosis factor-α (TNF-α) and the IL-16.[71,73]  

Conclusively, the variation in localities and structural alterations during 
H. pylori infection appear to be vital for lessening host immune system  
and help in the adaptation of H. pylori in gastric niche, showing that  
H. pylori can manipulate many processes of epithelial cell and to deregulating 
multiple signaling pathways. This results in bacterial attachment to the 
cell, introduction of pro-inflammatory reactions by releasing cytokine/
chemokine, induction of apoptosis, proliferation and an augmented 
mitogenic response, which eventually result in sustained colonization, 
intense inflammation, distraction of gastric epithelial barrier function and 
gastric adenocarcinoma.

H. pylori Colonization determinants
Adherence determinants on signaling cascades

The first step in pathogenicity of H. pylori is supposed to be its adhesion 
to the gastric epithelial cells. This is carried out by the large group of outer 
membrane proteins,[74-76] which consists of some adhesins, such as Blood-
group-antigen-binding adhesion (BabA), Sialic acid binding adhesion (SabA), 
adherence associated lipoprotein A and B (AlpA/B) and Outer inflammatory 
protein A (OipA), which facilitate the attachment of H. pylori to the gastric 
epithelial cell membrane during pathogenesis[77] and other factors, such as 
urease, catalase, cytotoxin, lipopolysaccharide and flagellin, which are capable  

of eliciting inflammatory reactions in gastric epithelium. The adhesion of  
H. pylori to the gastric epithelial cell is extremely necessary for the 
pathogenesis of H. pylori,[78] but there are sparse evidences of showing that 
these adhesins have direct effect on signaling cascades. This shows that these 
adherence factors may facilitate a tight communication among H. pylori and 
the gastric epithelial cell, possibly providing the approach for the interaction 
of other bacterial factors with the target receptors of the host cell. Several 
adherence determinants acting on signaling cascades have been recognized 
yet which are capable of altering the pathways of signal transduction and 
carrying out other bacterial virulence factors to interact with the host gastric 
epithelial cell membrane, which are normally not capable of interacting and 
altering signal transduction pathways.

Other putative adherence determinants

There are many other putative adherence determinants that play a role in 
the adhesion of H. pylori to the host target cell. HopZ, a phase-variable 
protein, has been implicated in H. pylori attachment during pathogenesis[79] 

and current studies disclosed that it has a role in the initial phase of 
colonization. Upon re-isolation from a healthy volunteer confronted with 
HopZ “off” status presented a robust in vivo selection for the HopZ “on” 
H. pylori.[80] In another study performed by Snelling and co-workers, HorB 
was proposed to have a role in H. pylori adhesion.[81] Another putative 
adherence determinant is HopQ, which has an adhesion-related function 
on the host target cell. In a subdivision of H. pylori strains, the deletion 
of HopQ augmented the attachment of H. pylori to AGS cells and guided 
them to a phenotype of increased adherence and consequently to the  
augmented phosphorylation of CagA, without any effect on IL-8 production.[82]  
Therefore, HopQ extensively led to lessening of CagA instillation into the 
host gastric epithelial cells in co-infection experiments.[83]

Initiative determinants in pathogenesis

Many secreted determinants are highly capable of causing virulence in  
H. pylori infections deprived of any interaction or attachment to the host 
target cells. Several secreted or extracellular determinants have been 
recognized in the H. pylori secretome analyses.[84,85] Besides uncharacterization 
of many H. pylori extracellular proteins, there is progressively improvement in 
the knowledge about γ-glutamyl transpeptidase (GGT), H. pylori Neutrophil-
activating protein (HN-NAP), urease, Vacuolating cytotoxin A (VacA), Cag 
pathogenicity-associated island (PAI) and a High temperature requirement 
A (HtrA). For instance, GGT has been recognized in the H. pylori soluble 
fraction and it has been revealed to augment H. pylori colonization in 
mice.[86] Fascinatingly, apoptosis and cell cycle arrest can be induced by 
recombinant GGT in AGS cells,[87,88] but this mechanism has not been 
clarified yet. HP-NAP, a chemotactive factor of H. pylori attracting and 
activating neutrophils,[89] has no obvious role in interaction of H. pylori with 
gastric cells. Moreover, urease, VacA, CagA and HtrA have several direct 
effects on host target cells, including introduction of apoptosis and waning 
the internal structure of intracellular bindings.

Peptidoglycans

Besides the roles in making the cellular structure of H. pylori and supporting 
H. pylori colonization, peptidoglycans are also the factors of H. pylori 
that are delivered to the host target cells via type 4 secreting system and 
Outer Membrane Vesicles (OMV).[90,91] By interacting with nucleotide-
binding oligomerization domain 1 (Nod 1), peptidoglycan results in the 
triggering of proinflammatory IL-8, MIP-2 and β-defensin-2 production 
via activation of NF-κB, p38 and Erk signaling in the target cells.[44,92,93] 
Moreover, Interferon-1 (IFN-1) production is regulated by the activation of 
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peptidoglycan-Nod1 signaling, which can mimic TH1 cell differentiation.[94]  
Furthermore, a reduction in mucosal cytokine reaction was discovered 
in NOD1 lacking mice that were infected with CagA-positive strains of 
H. pylori,[95,96] showing that peptidoglycan-NOD1 signaling is vital in the 
immune reactions concerning H. pylori.[97,98] However, the preference of 
peptidoglycan for delivery into the target cell through T4SS-dependent 
manner or transmembrane delivery through Outer membrane vesicles 
(OMVs) before NF-κB stimulation still requires further evaluation.[90] 

In addition, the transfer of peptidoglycan into the target cells causes possible 
carcinogenetic reactions like cell immigration and PI3K stimulation. A 
lytic transglycosylase, encoded by slt gene of H. pylori, is necessary for the 
production and turnover of peptidoglycan,[99] thus restraining the amount 
of peptidoglycan transferring components because inactivation of slt 
gene results in inhibition of H. pylori causing cell immigration and PI3K 
stimulation.[100] HP0310 gene of H. pylori is necessary for peptidoglycan 
production and causes deacetylation of peptidoglycan that is essential for 
adaptation and colonization of H. pylori in gastric epithelial cells.[101,102] Deficit 
of HP0310 gene results in lessened peptidoglycan synthesis and intensified 
delivery of other main Cag T4SS molecules, CagA, implying an association 
between virulence factors of H. pylori.[103]

H. pylori translocation and type 4 secretion system

Many evidences demonstrated that after H. pylori colonization in the 
gastric epithelial cells, the delivery of CagA into the host target cells is 
arbitrated by T4SS, by communicating with the cell membrane of the gastric 
epithelial cells.[104,105] Thought the precise mechanism is undetermined, it 
appears to be elicited by the collaboration between T4SS pilus, CagL and 
α5β1 receptor molecule and also needs the collaboration between CagA  
and Phosphatidylserine (PS) situated at the exterior leaflet of host cell 
membrane.[50,106]Many bacterial virulence determinant proteins are 
transferred into the target cells via Type 4 secretion system (T4SS) and 
are necessary for CagA delivary like CagT.[107] CagE is a basic structural 
and functional constituent of T4SS and its inactivation abolishes H. pylori  
protein transportation into the target cells. CagL, a well-preserved  
H. pylori determinant protein and consists of arginine-glycine-aspartate motif 
that allows the attachment of H. pylori to α5- β1 receptors on gastric cell 
membrane, is responsible for the production of tip of type 4 secretion system 
pilus, helping the CagA delivery into the host target cells and activating FAK 
and Src in the host cells and can also attach to integrin and fibronectin with 
unknown effects.[108] CagI, not necessary for transportation of CagA but is a 
vital component of T4SS, is manipulated by the appearance of other cagPAI 
products, showing that their induction needs partial gathering of T4SS.
[40,109,110] CagM proteins are also intricate in CagA delivery into the target cells, 
but proteins having deficient mutants show a little contribution in CagA 
delivery during infection.[111] Recent studies suggest that CagA, CagI and 
CagY proteins can attach to β-1 component of target cell membrane and 
cause alteration in heterodimers, letting transportation of bacterial molecules.
[112,113] All together, these outcomes suggest that for CagA delivery into the 
target cells, which depends on energy-associated target cells mechanisms, 
H. pylori manipulates the cell membrane exterior molecules, such as integrin 
and PS. CagA delivery also requires polymerization of actin and cholesterol 
of cell membrane.

After delivery of CagA into the host target cells, CagA communicate with 
cellular proteins and causing distraction of several signaling cascades in host 
cells. This results in “Hummingbird phenotype”, which is an elongation 
caused by the establishment of pseudopodia and stress fibers from disruption 
of the cell-to-cell binding in gastric epithelium.[114-116]

H. pylori gastric mucosal penetration

A secreted mucosal layer shelters the whole surface of the alimentary  
tract and, for colonization and entry into the target cell epithelium,  
H. pylori infiltrates the gastric mucosal layer that is about 300μm thick.[117]  
H. pylori can modify the mucosal structure that may assist in passage through 
viscoelastic mucosal gel coating. Thioredoxin system, which particularly 
lessens the disulphide bonds of mucins,[118] is capable of lessening the 
gel-creating quality of mucins and therefore assisting in the movement of  
H. pylori via mucosal layer of the epithelium. In the absence of urea,  
H. pylori can live in 4 to 8 pH environment, but, in the presence of urea, 
H. pylori can live in pH environment as low as 2.5.[119] Studies have shown 
that mucin in the stomach depends on pH, as strong acidic environment 
results in more gel-forming mucus than at pH more than 4.0.[120] Urea 
consumption of H. pylori augments the pH, thus causing less gel mucosal 
coating and quick H. pylori delivery via it.[121] The role of pH is also obvious 
in H. pylori localization, normally H. pylori is located near the epithelium of 
the stomach, but the disturbance of pH gradient in mucosal coating causes 
H. pylori scattering throughout the gastric mucosal coating and no more 
near the epithelium.[122] As H. pylori has spiral structure that also assists in 
manipulating the mucosal-coating entry of the bacterium, modification in 
helical structure of H. pylori via variations in peptidoglycan cross-linking 
appears to be assistance in H. pylori gastric mucosal penetration in a 
corkscrew-like movement. Nevertheless, some mutants are not capable 
of colonization in vitro as spiral bacteria regardless of exhibiting the same 
motility as those of wild-type.[123]

H. pylori translocation into the target cell

The colonization of several bacteria in the alimentary tract mostly is liable on 
their capability of attaining the entry to the target cells, which are ordinarily 
not phagocytic cells. H. pylori, considered to be a facultative bacterium 
inside the target cells,[124] is only found in the host stomach attached to the 
epithelium as a non-invasive manner mostly, although several studies have 
disclosed that H. pylori is actually invasive pathogen.[124-126] As we know 
that bacteria inside the cells are more resistant to antibiotics and humoral 
immunity, thus H. pylori entry into the target cells is very important for its 
colonization and triggering of serious diseases,[127] as do the other invasive 
bacteria.

For establishing and developing of an infectious disease, pathogen-target 
cell interaction and the expression of certain determinants are crucial to 
overwhelm the host immunity. The gastric epithelial cells have apical-
basolateral structure that is predominantly preserved by tight and adherence 
junctions and actin cytoskeleton.[128,129] CagA attaches with renowned 
manipulators of cellular polarization and adhesion, such as c-Met, Par 
proteins, E-cadherin, p120, ZO-1, catenin, etc., in phosphorylation-
independent manner.[49] Consequently, CagA may distract tight junctions 
and adherence junctions by directly affecting the cell-cell adhesions.[130,131] 
The delivery of H. pylori into the target cells is carried out with the help of 
various adherence determinants, which are discussed above. A few evidences 
demonstrate the direct influence of these determinants on signaling cascades, 
but they may have a function in the communication of H. pylori with host 
target cells during infection.

CagA as an Oncogenic Driver

Gastric cancer (GC), mostly adenocarcinomas that are classified as intestinal 
and diffuse types, is the fourth highly usual malignancy and the second 
leading cause of cancer-related deaths and accounts for approximately 10% 
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of the total cancer-related deaths in global population.[132] The incidence of 
GC largely varies on geographical distribution and, actually, greater than half 
of the cases are reported in East Asia. Several transgenic studies have been 
performed in animals and yet proved CagA as an oncogenic driver.[15,133,134] 
Due to persistent H. pylori infection, gastric epithelium goes under intestinal 
metaplastic changes and is supposed to be the precancerous condition of 
the target cells.[135] Sensitivity of the target cells to the oncogenic exposure 
is augmented by pathological dysplasia. CagA may also manipulate cancer-
related stem cells in the stomach, as CagA can provoke EMT-like variation 
that shows cell reprogramming.[130,136] and CagA can express CD44v9 that 
helps in longevity of CagA oncogenic accomplishment.[137]

The Role of  CagA in Oncogenic Signaling Cascades
The Wnt/ β-catenin signaling pathway

The Wnt/ β-catenin signaling pathway, managing embryonic growth 
and also tissue homeostasis in adults, plays a vital function in the disease 
development and β-catenin is the essential target of this pathway.[138,139] 
As this pathway is involved in the proliferation and differentiation of the 
cells, the deregulation of this pathway is extensively incriminated in various 
human GI cancers like CRC and GC[140,141] and is carried out by pathway 
constituent modification, antagonist inhibition or cross-link with other 
pathways. Besides Wnt/ β-catenin signaling pathway activation, the alteration 
in β-catenin locality and the augmentation in β-catenin nuclear assembly in 
AGS host target cells are carried out by H. pylori CagA-positive strains. These 
modifications are also reported in H. pylori colonized gerbil gastric mucosal 
layers and human gastric mucosal layers.[142] EPIYA repeat segments are 
obligatory for β-catenin locality and succeeding Wnt/ β-catenin signaling 
pathway stimulation by CagA in phosphorylation-independent manner.[143] 
In Zebrafish intestinal tract, because of the transgenic CagA expression 
in vivo, augmented abnormal target cells proliferation via Wnt target 
genes stimulation discloses a relation between CagA and Wnt/ β-catenin 
signaling pathway.[134] During H. pylori CagA-positive strains infection, CagA 
competitively bind to E-cadherin and distract the E-cadherin and β-catenin 
complex production in phosphorylation-independent manner, resulting in 
β-catenin assembly in cytoplasm and nucleus.[131]

PI3K/Akt signaling pathway

PI3K/Akt signaling pathway, overactive in certain cancers including 
GC,[144,145] is triggered by certain growth factors via specific receptors, like 
Epidermal growth factor receptor (EGFR) and c-met. Infection of H. pylori 
is an effective determinant in triggering and the downstreaming of PI3K/
Akt pathway, which provokes EGFR Tyr 992 phosphorylation (via CagA 
and OipA) and EGFR transactivation.[146,147] This leads to activation of 
PI3K p85 and phosphorylation of Akt Thr 308 and Akt Ser 473 site. During 
infection of H. pylori, the alterations in CagA causes lessened number of 
activated Akt Thr 308 residue and the alterations in OipA causes lessened 
number of Akt Ser 473 residue.[148] Fascinatingly, in early infection, EGFR 
is stimulated by H. pylori and during persistent H. pylori infection, CagA 
disables EGFR stimulation by suppressing EGFR phosphorylation.[149] 
Furthermore, CRPIA of CagA, located at the C-terminal region, is intricate 
in the downstreaming of PI3K/Akt cascade via collaboration with c-met, 
which leads to GSKK3-β (PI3K/Akt downstream target) deactivation and 
subsequently stimulation of β-catenin transcription.[147,148] Interacting with 
B-TPM, CagA also persuades PI3K/Akt signaling cascade.[150]

CagA-PRK2 interaction and inhibition of  its kinase 
activity

PRK2 (Protein kinase C-related kinase 2), an isoform of serine-threonine 
kinases and is extracted first from a human cDNA in 1994, interact directly 
with CagA and is supposed to be recruited to the target cell membrane. 
Various isoforms with different names were identified shortly after, including 
three human isoforms PRK1 (PRK-α), PRK2 (PRK-γ) and PRK3 (PRK-β).  
PRK2 has a proline-containing region that occurred in the linker of  
C2-like domain and C-terminal domain.[151] The substrates of PRK2 consist 
of Nck4,[152] Grb4, Fyn[153] and cortactin.[154] PRK2 is involved in many 
cellular activities like augmented cellular adhesion through regulation of 
apical junction and cellular interactions,[153] cell cycle control[155] and cellular 
movement and invasion.[156,157] These activities are carried out through 
PRK2 stimulation that needs the interaction between rho-GTP and ACC1 
(Antiparallel-coiled coil) domain, which in turn leads to PIF (PDK1 
interacting fragment) discharge and thus allowing PDK1 (Phosphoinositide-
dependent kinase 1) attachment and PRK2 triggering loop phosphorylation.[158]  
Many evidence showed that EMT (Epithelial-mesenchymal transition) is 
manipulated by CagA and its activities lead to the disruption of cellular 
skeleton, cellular polarity and adhesions and increased cellular movement, 
which in turn leads to tumorigenesis.[115,136,159] Consequently, the CagA-
PRK2 interaction and the inhibition of its activities appear to be involved 
in the development of gastric disease and may also be involved in CagA 
oncogenic activities.

Hh signaling pathway

The Hedgehog (Hh) signaling pathway, plays an essential part in embryonic 
growth, tissue homeostasis in adults and carcinogenesis and it can be over-
stimulated by CagA via overexpression of Shh (Sonic hedgehog)[160,161] that 
causes chemotaxis during the infection.[162,163] The Shh is chiefly expressed 
in gastric parietal epithelial cells and impacts on the role of fundic glands. 
Schumacher et al. found that up-regulation of sonic hedgehog by H. pylori 
CagA is manipulated through NF-κB signaling cascade.[164]

JNK signaling pathway

The c-Jun NH2-terminal kinase (JNK) signaling pathway has both tumors 
suppressing role and pre-cancerous role in various organs and cells.[165,166] 
During H. pylori infection, CagA as a crucial determinant can trigger the 
activation of this signaling cascade.[167] This mechanism is supported by the 
findings of Wandler et al. in which the expression of CagA in transgenic 
Drosophila is carried out by apoptosis in target cells via the stimulation of 
c-Jun NH2-terminal kinase signaling pathway.[168]

JAK/ STAT3 signaling pathway

Deregulation of the Janus kinase (JAK)/ signal transducers and activators 
of transcription 3 (STAT3) signaling pathway is seen in various tumors and 
is associated with carcinogenesis and poor prognosis. Jackson et al. found 
that H. pylori cagA-positive strains can provoke more stimulation of STAT3 
in the gastric epithelial cells[169] and CagA needs IL-6 and gp130 receptor 
for STAT3 stimulation.[170] CagA induces overexpression of bactericidal 
lectin and regenerating islet-derived (REG) 3γ in target cells through 
STAT3 stimulation cascade.[169] STAT3 phosphorylation, nuclear locality 
and transcriptional action in target cells are reliant on non-phosphorylated 
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CagA during H. pylori infection. Consequently, H. pylorus is capable of swaying 
host defense mechanisms and smoothing the evasion of host immunity via 
deregulation of the JAK/STAT3 signaling pathway.[169,171]

The role of  CagA in tumor suppressor pathways
CagA-mediated degradation of  p53

Many evidences disclosed that the two vital steps in tumorigenesis are 
oncogenes stimulation and tumor suppressor genes deactivation. A crucial 
event in the development and progression of a tumor is deactivation of 
p53, which is a vital tumor suppressor. Wei et al. found that the level of p53 
rises initially and then declines promptly in H. pylori infected gerbil gastric 
epithelial cells and it rises again upon persistent infection for 12 weeks.[172] 
They reported that CagA persuades HDM2 (Human Double Minute 2) 
phosphorylation, which leads to the distraction of p53. This phosphorylation and  
stimulation of HDM2 can be intervened via Akt or ERK stimulation.[172,173]  

The proteosomal distraction of p53 is inhibited by p14ARF (A tumor 
suppressor) via sequestration of HDM2 and inhibition of its E3 ligase action.[174]  
During H. pylori infection, CagA-induced methylation of p14ARF leads to 
a decline level of p14ARF, which is insufficient for HDM2 and ARF-BP1 
(A ubiquitin ligase) inhibition and then p53 degradation is carried out by 
HDM2 and ARF-BP1 activities.[175] ASPP2 (Apoptosis-stimulating protein 
of p53) is a p53-binding protein and a tumor suppressor and is conscripted 
by CagA during infection. Then the conscripted ASPP2 interacts with p53, 
which is letter distracted by proteasome, showing resistance to apoptosis.[176]  
Infections with CagA-positive strains of H. pylori demonstrate an augmented 
prospect of having p53 mutations, which occur in 40% to 50% of GC.[177,178] 
In vitro studies, AID (Activation-induced cytidine deaminase), which is a 
nucleotide mutator enzyme and is manipulated by CagA during CagA-
positive strains infection, causing AID overexpression in host target cells 
through NF-κB stimulation and ultimately eliciting p53 mutations.[179]

CagA- mediated degradation of  RUNX3

Runt-related transcription factor 3 (RUNX3) usually acts as a tumor 
suppressor and is deactivated by CagA in precancerous lesions of the 
stomach.[180] During the infection of H. pylori Cag-positive strains, CagA 
prevents the RUNX3 expression by ERK/MAPK signaling cascade.[181] 
CagA may also augment the methylation risk of RUNX3 during infection.[182] 
CagA also directs RUNX3 for distraction via proteasome and ubiquitination.[183]

CagA-induced tumor suppressor genes hypermethylation

Several tumor suppressor genes, including E-cadherin, RASSF1, 
DLC1, MGMT, RUNX3, p14 and p16, are distracted in CagA-induced  
hypermethyltion in H. pylori infected epithelial cells. Infection with  
H. pylori leads to augmented production of IL-1β and Nitric oxide (NO), 
which paly a crucial part in methylation induced by H. pylori.[184,185] Cheng 
et al identified concurrently H. pylori-induced hypermethylated genes in 
mouse and human epithelial cells of GC and disclosed that the prognosis 
of GC is affected by H. pylori-induced hypermethylation of Foxd3 (A tumor 
suppressor).[186] Moreover, methylation caused by H. pylori also arises in 
microRNAs (miRNAs) and distraction of these miRNAs provokes tumor 
formation via their oncogenic genes stimulation.[187] Furthermore, during 
infection with H. pylori, the number of methyletransferases (DNMTs) is 
augmented by persistent NF-κB transcription factor stimulation.[185,188] 
which in turn causes hypermethylation of several genes and also gastric 
mucosal microsatellite instability displayed in some GC cases. These factors 
are involved in hit-and-run carcinogenesis due to the direct CagA action. 
The elevation of DNMTs also causes CIMP expression,[189] which in turn 

leads to the stimulation of epigenetic changes in cells involved in chronic 
inflammation.

The role of  Caga in Inflammation
The NF-κB NF-κB-dependent inflammation

The NF-κB (nuclear factor κB) transcription factor acts as a crucial factor in 
inflammatory reactions and in inflammation-induced tumorigenesis.[190] The 
NF-κB inhibitor IκB communicates with NF-κB factor and results in the 
sequestration of NF-κB in the cytoplasm of deactivated cells. The IκB kinase 
(IκK) stimulation via infectious microorganisms and certain cytokines leads 
to phosphorylation of IκB and by this way provokes IκB distraction that is 
reliant on proteosomal activity. The lessening of IκB under specific level 
initiates the nuclear localization of NF-κB and ensuring the stimulation of 
inflammatory genes expression.Through lipopolysaccharides, peptidoglycan, 
or T4SS, H. pylori is capable of stimulating NF-κB transcription factor in the 
target cells of gastric epithelium as well as of immune system.[191] Various 
studies revealed that several certain signaling cascades, including PI3K-AKT, 
Ras and TRAF6-TAK1, are involved in NF-κB stimulation via CagA upon 
its delivery into the target cells.[93,147] Many evidences also disclosed the direct 
CagA-induced NF-κB transcription factor stimulation.[147,192] Infection with 
CagA-positive strains of H. pylori can induce CIN by PAR1 inhibition[193]  
that results in peculiar stimulation of NF-κB production. CagA-PAR1 
interaction destabilizes microtubule system and thereby triggering  
IκB distraction, which in turn causes lessening number of IκB and then  
NF-κB stimulation. Since H. pylori can trigger the CagA-independent  
NF-κB stimulation, CagA may play a role as an amplifier of inflammation 
in the target cells during the infection.[99,191]

The NF- κB-independent inflammation

Several studies have shown that individuals with CagA-positive strains 
have more serious inflammatory reactions than those with CagA-negative 
strains.[54] CagA can stimulate certain inflammatory factors in target cells 
not depending upon NF- κB transcription factor. The C-terminal region 
of CagA is highly disordered,[39] which may be considered as a hazard 
indication by inflammatory factors. During H. pylori CagA-positive strains 
infection, IL1B gene mutations are related with augmented risk of gastric 
adenocarcinoma[194] and this has been proved in mice, which developed  
gastric adenocarcinoma following stimulation of IL-1β overexpression.[195]  
Consequently, CagA-induced inflammatory reactions may appear to be 
involved in GC occurrence through CagA-IL-1β interaction.

The role of  inflammation in CagA-mediated 
tumorigenesis

Several studies disclosed that chronic inflammation creates such an 
environment for the target cells and manipulates them to undergo 
carcinogenesis. And the role of chronic inflammation in gastric 
adenocarcinoma is very prominent.[196] Ohnishi et al. reported that CagA-
mediated tumorigenesis might be autonomous by itself because there was 
no obvious association of inflammation with tumorigenesis in transgenic 
mice.[15] However, it is certain that H. pylori CagA strains induce serious 
damage to the gastric epithelium and leads to chronic atrophic gastritis and 
intestinal precancerous metaplastic changes. As discussed above, CagA can 
trigger NF-κB transcriptional factor stimulation through several mechanisms 
and this factor as a promoter in inflammation is highly active upon CagA 
delivery into the target cells. As mentioned above, CagA can also trigger 
STAT3 transcriptional factor stimulation, which also acts as a promoter 
of inflammation during H. pylori infection. Whether acting through SHP2-
Erk-NF-κB cascades or IL-6-JAK-STAT cascade, CagA by downstreaming 
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signaling cascade provokes NF-κB and/or STAT3, which in turn leads to the 
expression of certain cytokines and anti-apoptotic factors and thus inducing 
tumorigenesis by inhibiting apoptosis of the target cells.[197] Recently Hayashi 
et al. found that mice without Claudin-18, which is encoded by CLDN18 gene 
and is the chief constituent of gastric mucosal tight junctions, revealed the 
distraction of the junctions and then the development of chronic atrophic 
gastritis and precancerous intestinal metaplastic changes.[198] They reported 
that there was no sign of dysplasia or tumorigenesis in the mice, which 
means that chronic inflammation-induced tumorigenesis needs additional 
determinant, like CagA, to introduce carcinoma in the target cells upon 
persistent infection with H. pylori. ROS, reactive oxygen species, is stimulated 
by inflammasomes during inflammation and leads to DNA disruption and 
thereby promoting mutations. By this mean, ROS triggers autophagy in the 
target cells of the stomach and the distraction of CagA. CagA can get away 
from this autophagy in GC stem cells by the expression of CD44v9, which 
counteracts ROS function by augmenting glutathione level in the target cells 
and thus leading to longer action of CagA as a carcinogen.
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